Quantcast
Channel: Active questions tagged expected-value - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 1315

Cauchy-Schwarz for expected values of vector-valued functions

$
0
0

Given functions $f,g: \mathcal{X} \to \mathcal{H}$ lying in a vector-valued RKHS $\mathcal{H}_v$, i.e. outputting functions in the RKHS $\mathcal{H}$, what can we do about bounding the quantity

$$\mathbb{E}_{x \sim \mathbb{P}_X}\left[ \langle f(x), g(x) \rangle_{\mathcal{H}} \right]$$

using Cauchy-Schwarz.

Do we have something like:

$$\mathbb{E}_{x \sim \mathbb{P}_X}\left[ \langle f(x), g(x) \rangle_{\mathcal{H}} \right] \le \sqrt{\mathbb{E}_{x \sim \mathbb{P}_X}\left[ \Vert f(x) \Vert_{\mathcal{H}}^2 \right]\mathbb{E}_{x \sim \mathbb{P}_X}\left[ \Vert g(x) \Vert_{\mathcal{H}}^2 \right]}$$

What can we say about

$$\mathbb{E}_{x \sim \mathbb{P}_X}\left[ h(x) \Vert f(x) - g(x) \Vert_{\mathcal{H}}^2 \right]$$

for some some function $h:\mathcal{X} \to \mathbb{R}$?


Viewing all articles
Browse latest Browse all 1315

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>